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Abstract

A semiclassical two-step heating model is proposed to investigate thermal transport in metals caused by ultrashort
laser heating. Based on the Boltzmann transport equation, three equations of the conservation of number density,
momentum and energy are derived for the electron subsystem. The thermal transport equation used for the phonon
subsystem remains the same as that used in the phenomenological two-temperature (2T) model, including the energy
exchange with hot electrons and the ultrafast thermal relaxation effect in general. The main difference between the semi-
classical and the phenomenological 2T models is that the former includes the effects of electron drifting, which could
result in significantly different electron and lattice temperature response from the latter for higher-intensity and shorter-
pulse laser heating.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rapid advancement in ultrashort-pulsed lasers over
the last decade has been driving a new research in many
areas of physics, chemistry, materials, medicine, and
engineering science. Among them, interaction of ultra-
short-pulsed lasers with matter is a topic of numerous
theoretical and experimental investigations [1–13, for
example]. In the theoretical investigation several phe-
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nomenological two-temperature (2T) models [1–3] have
been employed for solving ultrafast thermal response
in the electrons and phonons (lattice), depending on
laser pulse length and the type of materials.

In a non-uniformly heated conductor in the absence
of current there arises an electric field [14]. If the electric
field and the carrier gradient become excessively large,
then non-equilibrium transport conditions will occur
[15]. This could be particularly true for ultrashort-pulse
laser heating due to the well-known fact that a tremen-
dously sharp gradient of the electron temperature (or
free electron density) is present in a small geometry
encountered. In order to establish a model that can
accurately describe the non-equilibrium electron effects,
there is a need to examine the transport equations with
the Boltzmann approximation.
ed.
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Nomenclature

Ae, Bl material constant for electron relaxation
time

b electron ballistic range
C heat capacity
Ce0 electron heat capacity constant
C0

e linear Ce assumed for TF/p
2
6 Te < TF

E electric field
e charge of an electron
f distribution function of electrons
G electron–phonon coupling factor
Grt G at room temperature
Hm fusion heat
~I unit dyad
K thermal conductivity
kB Boltzmann constant
L film thickness
m mass of an electron
N number density of atoms
N = tbVF/Dx
n number density of electronseP electron kinetic pressure dyad
p isotropic electron kinetic pressure
Q heat flux vector
q number of total grid points
R surface reflectivity
�r position vector (xi)
S volumetric laser heat source

S
^

modified laser heat source with electron
ballistic motionbS modified laser heat source with electron
ballistic motion and thermalization

T temperature
TF Fermi temperature
Tm melting point

T0 initial temperature
t time
tb time of the electron ballistic motion
tp pulse duration defined as full width at half

maximum
tR thermalization time of electrons
u(t) unit step function
�u velocity vector (ui)
VF Fermi velocity
�v mean (drift) velocity vector
Dx grid spacing
x direction of laser beam propagation

Greek symbols

b electric field coefficient
v, g electron thermal conductivity constant
d optical penetration depth
/ laser fluence
K hot-electron blast force constant
l0 mobility of electrons at room temperature
he =Te/TF

hl =Tl/TF

s relaxation time
se–p energy relaxation time
sk momentum relaxation time
n electron energy density
W electron thermalization function

Subscripts and superscripts

c collision
e electron
j grid point
l lattice (phonon)
x x-coordinate
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In this paper a semiclassical 2T model is developed to
investigate thermal transport in metals irradiated by
ultrashort laser pulses. Three equations governing the
conservation of number density, momentum and energy
are derived for the electron subsystem from the first
three moments of the Boltzmann transport equation.
For the phonon subsystem, the thermal transport
equation used is the same as that used in the phenome-
nological two-temperature (2T) model, including the en-
ergy exchange with hot electrons and the ultrafast
thermal relaxation effect in general [3]. The temperatures
in both the electron and lattice subsystems are solved
simultaneously with a finite difference method. The main
difference between the semiclassical and the phenomeno-
logical 2T models is that the former includes the effects
of the electron drift velocity, which is caused by the
resulting electric field and hot-electron kinetic pressure.
In addition to the diffusion of electron energy, the drift-
ing of electrons could play an important role in the
thermal transport in ultrafast laser heating. Numerical
analysis is performed for gold films. The results are
compared with the phenomenological 2T model as
well as the experimental data available in the open
literature.
2. Semiclassical two-temperature model

The phenomenological, dual-hyperbolic 2T model
proposed by Chen and Beraun [3] for ultrafast laser–
material interactions is given as
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Ce
oT e

ot
¼ �r � Qe � GðT e � T lÞ þ Sð�r; tÞ ð1Þ

se
oQe

ot
þ Qe ¼ �KerT e ð2Þ

Cl
oT l

ot
¼ �r � Ql þ GðT e � T lÞ ð3Þ

sl
oQl

ot
þ Ql ¼ �K lrT l ð4Þ

For pure metals, heat conduction in the lattice is small
compared to that in the electrons. Therefore, Ql in
Eqs. (3) and (4) are often neglected. In that case the
above dual-hyperbolic model is reduced to the hyper-
bolic 2T model [2]. By further letting se in Eq. (2) be
zero, the hyperbolic 2T model is reduced to the para-
bolic 2T model [1]. Since the electron relaxation time
(se) is shorter than several tens femtoseconds (fs) for
metals, the difference among the three models would
be insignificant provided that laser pulses are much
longer than se [16].

To establish a model that is able to describe the non-
equilibrium electron effects more accurately, a set of the
semiclassical transport equations are formulated below
to accommodate the electron concentration, drifting
(mean) velocity, and average energy based on the Boltz-
mann transport equation. Let f ð�r; �u; tÞ be a distribution
function of electrons at time t in the phase space with
position vector ð�rÞ and velocity vector ð�uÞ. If the Lorentz
force due to magnetic fields is neglected, the Boltzmann
transport equation for electrons is in the form

df
dt

¼ of
ot

þ �u � rrf þ e
m
E � ruf ¼ of

ot

� �
c

ð5Þ

where the del operators $r = o/oxi and $u = o/oui (the
index i = 1,2,3 refers to the direction); eE=m is the Lor-
entz force resulting from the electric field. The total
derivative df/dt is evaluated along the trajectory
ð�rðtÞ; �uðtÞÞ in the absence of collision. The term (of/ot)c
is the time rate of change of f due to the electron
collision.

For convenience, the electron number density nð�r; tÞ,
mean velocity vector �vð�r; tÞ, kinetic pressure dyad eP ð�r; tÞ,
and energy flux vector Qð�r; tÞ in the entire velocity space
are defined here by averaging the various moments of
the phase space distribution function [17]:

nð�r; tÞ ¼
Z

f ð�r; �u; tÞd�u ð6Þ

�vð�r; tÞ ¼ 1

n

Z
�uf ð�r; �u; tÞd�u ð7Þ

eP ð�r; tÞ ¼ m
Z

ð�u� �vÞð�u� �vÞf ð�r; �u; tÞd�u ð8Þ

Qð�r; tÞ ¼ m
2

Z
ð�u� �vÞ � ð�u� �vÞð�u� �vÞf ð�r; �u; tÞd�u ð9Þ
The continuity equation for the electron number density
can be derived by integrating the Boltzmann transport
equation (5) over velocities,Z

of
ot

þ �u � rrf þ e
m
E � ruf

� �
d�u ¼

Z
of
ot

� �
c

d�u ð10Þ

Since �r and �u are independent, the above equation is sim-
plified to

on
ot

þrr � ðn�vÞ ¼
on
ot

� �
c

ð11Þ

The third term in Eq. (10) vanishes due to the fact that
f! 0 as j�vj ! 1 and the condition that E is indepen-
dent of �u.

Multiplying Eq. (5) by the velocity �u and integrating
the equation over the velocity space results in the equa-
tion of the conservation of momentum for the electron
gas

m
o�v
ot

þ m�v � rr�v� eE þ 1

n
rr � eP ¼ m

o�v
ot

� �
c

ð12Þ

Assuming an isotropic Maxwell–Boltzmann distribution
of peculiar velocities, the electron kinetic pressure is
isotropic, i.e., eP ¼ p~I ¼ nkBT e

~I [17]. The electric field
generated in a non-uniformly heated conductor in the
absence of current is E ¼ brT e with b = �1.42 ·
10�4(Te/TF) V/K for free electrons [14]. The collision
term mðo�v=otÞc represents the time rate of change of
momentum density due to intraband collisions and
generation-recombination processes and is approxi-
mated by [15]

m
o�v
ot

� �
c

¼ �m
�v
sk

ð13Þ

where sk = ml0Tl/eTe is the momentum relaxation time
[18].

It is well-known that only those electrons in states
within the energy range kBT can be excited thermally
at temperature T. If one atom can give one valence elec-
tron to the free electron gas, then the number density of
the excited electrons at temperatures Te � TF is given by
[19]

n ¼ 1

3
p2N

T e

T F

ð14Þ

The renowned linear relationship of the electron heat
capacity is thus derived

Ce ¼
3

2
nkB ¼ 1

2
p2NkB

T e

T F

¼ Ce0T e ð15Þ

with the constant Ce0 = p2NkB/2TF. The electron kinetic
pressure, p = nkBTe, can be re-expressed in terms of Ce0

and Te

p ¼ 2

3
Ce0T 2

e ð16Þ
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Thus,

rr � eP ¼ 2nkBrT e ¼ r 2

3
Ce0T 2

e

� �
ð17Þ

The term rr � eP derived above is the so-called hot-elec-
tron blast force rðKT 2

eÞ that was derived by Falkovsky
and Mishchenko in 1999 [20]. Because it was too difficult
to solve the coupled non-linear Boltzmann and thermo-
conductivity equations, the constant K was approxi-
mated to be gCe0 with g � 1 based on the dominant
contribution from the local equilibrium partition func-
tion [20]. In this work, the constant K is exactly derived
with g = 2/3. It should be pointed out here that as
described by Eqs. (14)–(17), the hot-electron blast force
derived by Falkovsky and Mishchenko is only adequate
for Te < 0.1TF. For higher temperatures, the electric
kinetic pressure is p = nkBTe = 2CeTe/3. Thus, a general
form of the hot-electron blast force should be 2$(CeTe)/
3. Fig. 1 gives the temperature-dependent heat capacity
of electrons for gold used in this study. In view of the
result [21], the relations Ce ¼ 2Ce0T e=3þ C0

e=3 for TF/
p2 6 Te < 3TF/p

2 and Ce ¼ NkB þ C0
e=3 for 3TF/p

2
6

Te < TF in Fig. 1 are approximated.
Substitution the relationships rr � eP ¼ rrðnkBT eÞ,

E ¼ brT e, and ðo�v=otÞc ¼ eT e�v=l0T l into Eq. (12) yields

m
o�v
ot

þ m�v � rr�vþ kB 1þ T e

Ce

oCe

oT e

� �
� eb

� �
rT e ¼ � eT e�v

l0T l

ð18Þ

For low temperatures T e

Ce

oCe

oT e
¼ 1 since Ce = Ce0Te.

Eq. (18) indicates that the electron drift velocity �v is
governed by the electron temperature distribution.

Similar to the derivation of the momentum equation,
the energy equation can be obtained by multiplying Eq.
(5) by the kinetic energy, m�u � �u=2. Averaging the result
over the entire velocity space and utilizing the continuity
and momentum conservation conditions lead to
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Fig. 1. Heat capacity of gold.
on
ot

þ �v � rrnþ
1

n
rr � ðnkBT e�vÞ þ

1

n
rr � Qe � eb�v � rT e

¼ on
ot

� �
c

ð19Þ

where n ¼ mj�vj2=2þ 3kBT e=2 is the electron energy den-
sity. The collision term, which is the time rate of change
of electron energy density due to electron–phonon scat-
tering and generation-recombination events, is approxi-
mated as (on/ot)c = (n � nl)/se–p with nl denoting the
equilibrium energy when Te = Tl and se–p being the
characteristic time for electrons and phonons to reach
equilibrium [15]. By making use of the momentum equa-
tion, Eq. (19) is reduced to

Ce
oT e

ot
þ �v � rrT e þ

2

3
T err � �v

� �
þrr � Qe ¼ Ce

oT e

ot

� �
c

ð20Þ

The term Ce(oTe/ot)c in Eq. (20) is equal to Ce(Te � Tl)/
se–p, which represents the time rate of thermal energy
exchange between the electrons and lattice. Along with
the optical-electron scattering due to laser excitation
the energy equation (20) becomes

Ce
oT e

ot
þ �v � rrT e þ

2

3
T err � �v

� �
þrr � Qe

¼ �GðT e � T lÞ þ Sð�r; tÞ ð21Þ

where G = Ce/se–p is the electron–phonon coupling fac-
tor. The electron–phonon thermalization time can be
determined with given G and Ce; for example, se–p � 1 ps
for metals at rt [2].

The semiclassical 2T model derived above includes:
Eqs. (18) and (21), the equations of the conservation
of momentum and energy for the electron subsystem;
Eq. (3), the equation of energy balance for the lattice
subsystem; and Eqs. (2) and (4), the constitutive equa-
tions for heat fluxes in the electrons and lattice. For a
1D transport problem, for instance, the above five equa-
tions are satisfied by the five unknowns, Qex, Te, vx, Qlx,
and Tl. The phenomenological dual-hyperbolic 2T mod-
els, on the other hand, involve four unknowns, Qex, Te,
Qlx and Tl, to be solved. The difference between the pres-
ent semiclassical and the phenomenological 2T models is
thus clear. The former not only includes two extra terms
in the energy balance equation for the electron subsys-
tem but also describe the electron drift velocity in the
momentum equation. Like the phenomenological 2T
models, the semiclassical model can be simplified under
the assumptions Ql ¼ 0 and/or se = 0.

As described by the momentum equation (18), the
electron drift velocity depends on the temperature field.
Noting the dependence of laser pulse length and fluence
for the electron temperature, it is observed from Eqs.
(18) and (21) that the shorter and the more intense a
laser pulse is, the higher the drift velocity would be
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and, consequently, the more the distinction between the
semiclassical and phenomenological 2T models would
exhibit. The conjecture will be confirmed numerically
later.
3. Solution algorithm

A 1D problem is numerically analyzed for pure met-
als in this work since ultrashort-pulsed laser spot sizes
are often much larger than the depth of the thermally af-
fected zone for the interaction time of interest [22]. The
1D version of the governing equations (2) and (3) with
Ql ¼ 0, (18) and (21) together with the following initial
and boundary conditions are solved with a central differ-
ence method [16]:

T eðx; 0Þ ¼ T lðx; 0Þ ¼ T 0; vxðx; 0Þ ¼ 0 ð22Þ

Qexð0; tÞ ¼ QexðL; tÞ ¼ 0 ð23Þ

where T0 is set at 300 K.
The laser heat source which has been widely used in

2T models is expressed as

Sðx; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
4 ln 2

p

r
ð1� RÞ/

dtp

� exp � x
d
� 4 ln 2

t � 2tp
tp

� �2
" #( )

ð24Þ

Lasing is assumed to start at t = 0 and end at t = 4tp.
The laser energy outside this period of time is neglected
since it is too small to significantly alter the result. It
should be noted that an intrinsic assumption that the ex-
cited electrons are immediately and fully thermalized is
applied when Eq. (24) is directly input to the energy
equation (21).

Immediately after a metal solid is illuminated by a
sub-picosecond (ps) laser pulse, while the excited elec-
trons are still highly non-equilibrium, two competing
processes take place. The non-thermalized electrons
move ballistically with a velocity close to the Fermi
velocity. Through collision, meanwhile, those non-ther-
malized electrons continue to thermalize into a Fermi–
Dirac distribution in which the electron temperature
can be measurable. It takes a finite period of time for
the excited electrons to travel ballistically and complete
the thermalization. Therefore, the laser heat source term
used in ultrafast 2T models should differ from that de-
scribed by Eq. (24). The other factor that may also play
a role in re-distributing the absorbed photon energy is
the change of the thermalized electron distribution due
to the electron drifting. However, this effect is neglected
in this work due to the fact that the electron drift veloc-
ity is much smaller than the ballistic velocity.

To better match the theoretical electron temperature
with the measured surface reflectivity, an effective
absorption depth that combines the optical penetration
depth (d) and an electron ballistic range (b) was intro-
duced [22–24]. For instance, an electron ballistic range
of 105 nm was assumed for gold, based on the postula-
tion that the excited, non-equilibrium electrons could
penetrate into the non-excited spatial region at the Fer-
mi velocity for about 100 fs [23]. With this approach the
re-distributed laser heat source remains exponential, de-
scribed by exp[�x/(d + b)]. Instead of imposing a ballis-
tic range on the optical penetration depth, we allow the
non-thermal equilibrium electrons to move randomly at
the Fermi velocity for a finite period of time (tb). Upon
the excitation by a laser pulse, the spatial distribution
of the absorbed photon energy is given by Eq. (24).
The absorbed energy then attenuates as the non-ther-
malized electrons propagate. For a grid spacing Dx,
the time interval for the excited electrons to travel from
a grid point to its neighbor points is Dx/VF. Thus, the
spatial distribution of the laser heat source after each
time interval becomes: S

^

j ¼ ðS
^

j�1 þ S
^

jþ1Þ=2 for interior

points (j = 2, . . . ,q � 1) and S
^

1 ¼ ðS
^

1 þ S
^

2Þ=2 and

S
^

q ¼ ðS
^

q�1 þ S
^

qþ1Þ=2 for the boundary points, where

S
^

j ¼ S
^
ðxj; tÞ for these terms on the left-hand sides,

S
^

j ¼ S
^
ðxj; t � DtÞ for those on the right-hand sides,

and S
^

jðxj; 0Þ ¼ Sðxj; 0Þ; j ¼ 1; 2; . . . ; q. The above re-
distribution of the laser heat source continues for N

times with N being determined from the relationship
NDx/VF = tb.

On the other hand, energy transfer from the non-
thermal part of the excited free electrons into the
Fermi–Dirac distribution takes place until the thermali-
zation process is complete. To accommodate the delayed
rise time of the electron temperature due to the build up
of the Fermi distribution, a system response function
was introduced [24,25]. In this work, the function
proposed by Ibrahim et al. [24] is considered for
accounting the delayed thermalization for the electrons
excited at time t 0

Wðt; t0Þ ¼ uðt � t0Þ 1� exp � t � t0

tR

� �2
" #( )

ð25Þ

According to Eq. (25), completion of the thermalization
is 0%, 63.2%, and 99.99% at t � t 0 = 0, tR and 3tR,
respectively.

By including both the electron ballistic motion and
the thermalization effects, the re-distributed laser heat
source ðbSÞ used in the 2T models becomes

bSðx; tÞ ¼ Xt0¼t

t0¼0

S
^
ðx; t0Þ½Wðt; t0Þ �Wðt � Dt; t0Þ� ð26Þ

The thermal conductivity and relaxation time of elec-
trons and the electron–phonon coupling factor used in
this study all are temperature dependent [26]:
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Ke ¼ v
h2e þ 0.16
� �5=4

h2e þ 0.44
� �

he

h2e þ 0.092
� �1=2

h2e þ ghl
� � ð27Þ

seðT e; T lÞ ¼
1

AeT 2
e þ BlT l

ð28Þ

G ¼ Grt
Ae

Bl

ðT e þ T lÞ þ 1

� �
ð29Þ

When a laser pulse length is much longer than the elec-
tron relaxation time, the electron relaxation term
seoQe=ot in Eq. (2) can be neglected. It, however, was
found from our numerical simulation that a much smal-
ler time increment is needed for advancing the solution
when this term is dropped off. For saving the computer
time, it is retained in the analysis even though the laser
pulse durations are much longer than se.
the front surface of an 80-nm gold film irradiated by a 2.8 mJ/
cm2, 800 nm, 150-fs laser pulse.

Fig. 3. Comparison of the change in electron temperature at
the front surface of a 100-nm gold film irradiated by a 13.4 mJ/
cm2, 560-nm, 100-fs laser pulse.
4. Numerical results

The numerical analysis was performed for gold with
a finite difference model composing of equally spaced
grid points. The material properties used are as follows
[19,26] unless otherwise mentioned: Ce0 = 70 J m�3 K�2,
Kl = 0, Tm = 1337 K, Hm = 6.275 · 104 J kg�1, TF =
6.4 · 104 K, N = 5.9 · 1028 m�1, l0 = 4.8 · 10�3 m2

s�1 V�1, R = 0.93, a = 15.3 nm, Ae = 1.2 · 107 K�2 s�1,
Bl = 1.23 · 1011 K�1 s�1, Grt = 2.2 · 1016 W m�3 K�1,
v = 353 W m�1 K�1, g = 0.16, and tb = 100 fs. The solid
line of Cl given in Fig. 1 is calculated from the relation-
ship C = Ce + Cl with C being the bulk heat capacity.
Resolution of the model and the time increment was first
studied with three sizes of grid spacing, 0.5, 1.0 and
2.0 nm. It was found that the grid size of 1 nm is ade-
quate to resolve the problem. Therefore, uniform-mesh
models with grid points of 1 nm apart were employed
in the following. The time increment used was
0.5 · 10�16 s except for the 800-ps laser pulse case, for
which the time increment was increased to 1.0 · 10�15 s.

Fig. 2 shows the normalized change of the electron
temperature at the front surface (x = 0) of an 80-nm
gold film illuminated by a 2.8 mJ/cm2, 800-nm, 150-fs la-
ser pulse. The values of R, a and tR used in this calcula-
tion were 0.967, 12.7 nm and 500 fs, respectively. The
experimental temperature data was deduced from the
measured reflectivity [24] with the linear relationship
DTe � DR. For comparison, the result computed with
tR = 0 (i.e. all the excited electrons complete thermaliza-
tion instantaneously) and that obtained from the phe-
nomenological 2T model with tR = 500 fs are also
presented in the figure. The simulated maximum elec-
tron temperature was 335.9 K for the case of tR = 500 fs
and 357.7 K for tR = 0, occurring at 0.988 ps and
0.358 ps, respectively. As shown in Fig. 2, it is clear that
the case of tR = 0 fails to capture the electron tempera-
ture response for the first several hundred femtoseconds.
On the other hand, the result computed with tR = 500 fs
agrees very well with the experimental data. It is worth
noting again the electron thermalization effects on the
delayed rise time of electron temperature and the reduc-
tion of the maximum temperature. The reason for such a
time delay and the reduction is the prolonged energy
transfer from the non-thermal part of the excited free
electrons into the Fermi–Dirac distribution. The delayed
response is accommodated by Eq. (26). Further investi-
gation with different values of the thermalization time tR
(not shown here for brevity) proved that the maximum
surface reflectivity decreases with the increase of tR,
according to the relationship DR � DTe. It is also seen
in Fig. 2 that at this low level of laser fluence the differ-
ence between the semiclassical and the phenomenologi-
cal 2T models is negligible.

Fig. 3 shows the normalized change of the electron
temperature at the front surface of a 100-nm gold film



Fig. 4. Comparison of the change in electron temperature at
the front surface of a 20-nm gold film irradiated by a 13.4 mJ/
cm2, 560-nm, 100-fs laser pulse.
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subjected to a 13.4 mJ/cm2, 630-nm, 100-fs laser heating.
Three electron thermalization times, tR = 0, 200 fs and
500 fs, were examined. For ease of comparison all the re-
sults are shifted so that the peak electron temperatures
appear at the same instance of time. The calculated
times when the maximum temperatures are reached are
0.244, 0.460 and 0.862 ps, respectively. Apparently, the
result obtained with tR = 200 fs is in good correlation
with the experimental data over the entire time history
[27], compared to the other two cases. The same conclu-
sion can be made for the 20-nm gold film (see Fig. 4). In
this case, the calculated peak temperatures occur at
0.304, 0.599 and 1.042 ps, respectively.

The effect of the film thickness on the rise of electron
temperature at the heated surface is shown in Fig. 5. In
view of the results in Figs. 3 and 4, a value of tR = 200 fs
was used in this analysis. It appears from Fig. 5 that
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Fig. 5. Thickness effect on the electron temperature at the front
surface of gold films irradiated by a 13.4 mJ/cm2, 560-nm, 100-
fs laser pulse.
increasing sample thickness decreases the delayed rise
time of the electron temperature, up to the film thickness
of 100 nm. The other finding is that the temperature de-
cay time decreases as the sample thickness increases, up
to the film thickness of 500 nm.

In the above analysis, the absorbed laser fluence is
0.938 mJ/cm2 for the 13.4 mJ/cm2, 630-nm, 100-fs laser
heating (Figs. 3 and 4) and is only 0.0924 mJ/cm2, one
order lower, for the 2.8 mJ/cm2, 800-nm, 150-fs laser
heating (Fig. 2). The results in Figs. 2–4 reveal that
the electron thermalization time in the former is about
200 fs, a 60% reduction from that in the latter. This sug-
gests that the electron thermalization time decrease with
the increase of laser fluence, which is consistent with the
previous observation [25]. It is thus expected that the ex-
cited electrons would thermalize very fast should laser
fluences be sufficiently high. Therefore, modification of
the laser heat source due to electron thermalization is
neglected in the following simulations since the fluences
considered are much higher than those studied above.

Fig. 6 shows the electron and lattice temperatures at
the heated surface of a 1.0-lm gold film illuminated by a
0.1 J/cm2, 630-nm, 100-fs laser pulse. At this level of
laser fluence, the difference between the semiclassical
and phenomenological 2T models is discernable although
it is immaterial. A pronounced distinction is seen in Fig. 7
for the higher fluence 1.0 J/cm2. These results confirm the
conjecture that the more intense the laser pulse, the more
the distinction between the two models.

The electron temperature distribution provides useful
information for the electric field and the shock wave
generation in the material and is plotted in Fig. 8 for a
1.0-lm gold film heated by a 1.0 J/cm2, 630-nm, 100-fs
laser pulse. For clarity, only the result over the region
of x = 0–0.3 lm is presented here. Fig. 9 depicts the
resulting electric field (Ex = bTe,x). The electric field
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Fig. 6. Time history of temperatures at the front surface of a
1.0-lm gold film heated with a 0.1 J/m2, 560-nm, 100-fs laser
pulse.
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Fig. 7. Time history of temperatures at the front surface of a
1.0-lm gold film heated with a 1.0 J/m2, 560-nm, 100-fs laser
pulse.
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Fig. 8. Electron temperature distribution over the region of
x = 0–0.3 lm in a 1.0-lm medium irradiated with a 1.0 J/m2,
560-nm, 100-fs laser pulse.
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intensity is about 39 MV/m when the electron tempera-
ture peaks at t = 0.2943 ps. The induced electron kinetic
pressure (p = 2CeTe/3) is shown in Fig. 10. The maxi-
mum pressure is 23.1 GPa, approximately 19 times the
ultimate strength of gold (1.24 GPa). Since the charac-
teristic diffusion velocity of electron thermal energy,
(Ke/Cese)

1/2, is much higher than the speed of sound,
the lattice motion is essentially initiated by the excessive
pressure of the hot-electron gas during the early time.
The resulting stresses in the lattice are subjected to the
electron kinetic pressure, thermal expansion, and
boundary conditions. The role that the hot-electron
blast force, $p, could play in destroying the cold lattice
was briefly discussed in Refs. [6,20]. Further investiga-
tion of the electric field and the electron kinetic pressure
on the ultrashort laser ablation is suggested.

Fig. 11 compares the simulated damage fluence
threshold with the experimental data [28] for gold irradi-
Fig. 11. Comparison of the simulated and measured damage
thresholds for a gold film heated with 600-fs and 800-ps laser
pulses.
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ated by two 1053-nm lasers of different pulse lengths,
600 fs and 800 ps, respectively. The measured damage
thresholds were determined based on the visible modifi-
cation to the front surface. Accordingly, it is assumed
here that initiation of damage occurs when the front sur-
face completes the solid-to-liquid phase change (melt-
ing). At this wavelength the skin depth is 3 nm. The
surface reflectivity used in the simulation is 0.9260 for
the 600-fs pulse and 0.9546 for the 800-ps pulse. It can
be seen from Fig. 11 that the semiclassical 2T model is
in good agreement with the measurement for both laser
pulses. The phenomenological 2T model, on the other
hand, results in slightly lower damage thresholds. For
the case of the 800-nm film heated by the 600-fs laser
pulse, for example, the damage threshold obtained from
the semiclassical model is about 12% higher than that
obtained from the phenomenological model. It reduces
to 7% for the longer, 800-ps pulse. This confirms the
conjecture that the shorter the laser pulses, the more
the distinction between the two models.

As shown in the energy equation (21), the two terms
that involve the electron drift velocity and are excluded
in conventional 2T models are �v � rrT e and 2T err � �v=3.
Our numerical results demonstrate that the latter has
much more impact on the change of electron tempera-
ture than the former. The difference of the impacts is
on the order of six (6). Accordingly, the term �v � rrT e

can be neglected without significant change of the result.
5. Conclusions

A semiclassical two-temperature model was formu-
lated to investigate thermal transport in metals heated
by ultrashort-pulsed lasers. The difference between the
semiclassical and phenomenological 2T models is that
the former includes two extra terms in the equation of
energy balance in the electron subsystem, involving the
electron drift velocity that is caused by the generated
electric field and the electron kinetic pressure as de-
scribed in the momentum equation. The volumetric laser
heat source used in the model was modified for accom-
modating the electron ballistic motion and the delayed
rise time of the electron temperature. The temperature
fields in the electrons and lattice were solved with the
equations of the conservation of momentum and energy
in electron subsystem and the equation of heat conduc-
tion in the lattice subsystem. Numerical analysis was
performed for gold films. It was shown that for high-
er-intensity and shorter-laser pulses, the semiclassical
2T model could result in different thermal response than
the phenomenal 2T model. It was also found that the
damage fluence threshold simulated with the semiclassi-
cal 2T model correlates very well with the experimental
data for gold irradiated by ultrashort (600 fs) and longer
(800 ps) laser pulses.
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